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Abstract 
 

A novel time series analysis procedure is presented to localize damage sources in a mechanical system. An attempt is 
made to pinpoint the sources of nonlinear damage by solely analysing the vibration signatures recorded from a structure 
of interests. First, a linear prediction model, combining Auto-Regressive (AR) and Auto-Regressive with eXogenous 
inputs (ARX) techniques, is estimated using a time series recorded under an undamaged stage of the structure. Then, the 
residual error, which is the difference between the actual time measurement and the prediction from the previously 
estimated AR-ARX combined model, is defined as our damage-sensitive feature. This study is based on the premise that 
if there were damage in the structure, the prediction model previously identified using the undamaged time history data 
would not be able to reproduce the newly obtained time series data measured under a damaged state of the structure. 
Furthermore, the increase of the residual errors would be maximised at the sensors instrumented near the actual damage 
locations. The applicability of this approach is demonstrated using the vibration test data obtained from an eight 
degrees-of-freedom (DOF) mass-spring system.  
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1. Introduction 
 

A recent collapse of a pedestrian walkway bridge in 
North Carolina, USA (http://www.cnn.com/2000/US/ 
05/21/walkway.collapse) has received a tremendous 
media’s attention emphasising the importance of the 
health and condition monitoring for such structures. 
Furthermore, we are on the brink of a major technical 
upheaval making the development of such a monitoring 
system feasible. 

Rytter (1993) categorised the damage monitoring 
process into four stages: (1) identification of the 
damage presence in the structure, (2) localisation of the 
damage, (3) quantification of the damage severity, (4) 
prediction of the remaining service life of the structure. 
Doebling et al. (1998) present a recent thorough review 
of the vibration-based damage identification methods. 
While the references cited in this review propose many 
different methods for identifying and localising damage 
from vibration response measurements, the majority of 
the cited references rely on cumbersome finite element 
modelling process and/or linear modal properties for 
damage diagnosis. 

The authors have been tackling the damage 
detection problems based exclusively on the statistical 
analysis of time series. The structural health-monitoring 
problem is posed in the context of a statistical pattern 
recognition paradigm. This paradigm can be described 
as a four-part process: 1.) operational evaluation, 2.) 
data acquisition & cleansing, 3.) feature extraction & 

data reduction, and 4.) statistical model development. 
In particular, this paper focuses on Parts 3 and 4 of the 
process. More detailed discussion of the statistical 
pattern recognition paradigm can be found in Farrar et 
al, 2000. It should be noted that neither any 
sophisticated finite element models nor the traditional 
modal parameters are employed in this paradigm 
because they often require labour intensive tuning and 
result in erroneous uncertainties caused by user 
interaction and modelling errors. The approach 
presented here is solely based on signal analysis of the 
measured vibration data making this approach very 
attractive for the development of an automated health 
monitoring system. This signal-only-based paradigm 
has been applied to the damage identification problem 
by the authors (Sohn et al., 2000 and Fugate et al., 
2000). In this paper, we are extending this paradigm to 
the second level damage diagnosis, damage 
localisation problems. The applicability of the 
proposed approach is investigated using a simple 8 
DOF mass-spring system tested in a laboratory 
environment. 
 
 
 

2. Test Structure 
 

An eight degrees-of-freedom system has been designed 
and constructed to study the effectiveness of the 
proposed localisation procedure. The system is formed 
with eight translating masses connected by springs. The 



system employed in this study is shown in Figure 1. 
Each mass is a disc of aluminium 25.4 mm thick and 
76.2 mm in diameter with a center hole. The hole is 
lined with a Teflon bushing. There are small steel 
collars on each end of the discs. The masses all slide on 
a highly polished steel rod that supports the masses and 
constrains them to translate along the rod. The masses 
are fastened together with coil springs epoxied to the 
collars that are, in turn, bolted to the masses. 
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The detailed specifications for the data acquisition are 
presented in Table 1. 

Table 1: Specifications for data acquisition 
Time step 0.001953 sec. 
Sampling rate 512 Hz 
Time period 8 sec. 
Frequency resolution 0.125Hz 
Number of data points 4096 
Filtering Uniform window 
Nyquist frequency 256Hz 
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may be located between any adjacent masses in the 
system. 

Linear damage is defined as a change in the 
stiffness characteristics of the system such that the 
system can still be modelled by the standard linear 
differential equations of motion for a vibrating system 
after the damage. Linear damage in the model is 
simulated by replacing an original spring with another 
linear spring which has a spring constant less than that 
of the original. The spring constant is gradually 
reduced to 52.6 kN/m (299 lb/in) (7 % reduction), 49.0 
kN/m (278 lb/in) (14% reduction), and 43.0 kN/m (244 
lb/in) (24% reduction) for selected spring locations, 
respectively. The replacement spring is located 
between any adjacent masses, and thus simulates 
different locations of damage. The replacement springs 
have different degrees of stiffness reduction to simulate 
different levels of damage. 
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nonlinear damage. When the distance between mass 
and the ends of the rods is equal to the initial clearance, 
impact occurs. This impact simulates damage caused by 
spring deterioration to a degree which permits contact 
between adjacent masses, or in a simplified manner, the 
impact from the closing of a crack during vibration. 
The degree of damage is controlled by changing the 
amount of relative motion permitted before contact, and 
changing the hardness of the bumpers on the impactors. 
 
 

3. Analysis Procedure 
 

A linear prediction model combining AR and ARX 
models is employed in this study to compute our 
damage-sensitive feature, the residual error. 

First, all time signals are normalized prior to fit an 
AR model such that: 

x

xxx
σ
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where x̂  is the normalized signal, xµ  and xσ  are the 
mean and standard deviation of x, respectively. This 
normalization procedure is applied for all signals 
employed in this study. (However, for simplicity, x is 
used to denote x̂  hereafter.) 

Then, we construct an AR model with p auto-
regressive terms, AR(p), using the time series obtained 
at the initial condition of the structure, x(t). In this 
example, AR(30) is constructed and an AR(p) model 
can be written as (Box et al., 1994) : 
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Employing a new segment y(t) obtained from 
unknown structural condition of the system, repeat 
Equation (2). Here the segment )(ty  has the same 
length as segment )(tx : 
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Next, we assumed that the error between the 
measurement and the prediction obtained by the AR 
model ( )(tex  in Equation (2)) is mainly caused by the 
unknown external input. Based on this assumption, we 
employ an ARX model (Auto-Regressive model with 
eXogenous inputs) to reconstruct the input/output 
relationship between )(tex  and )(tx . 
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where )(txε  is the residual error after fitting the 
ARX(a,b) model to the )(tex  and )(tx  pair. Our 
feature for the classification of damage status will later 
be related to this quantity, )(txε . ARX(25,25) is used 
in this example. Here, the a and b values of the ARX 
model are set rather arbitrarily. However, similar 
results are obtained for different a and b values as long 

as the sum of a and b is kept smaller than p 
( pba ≤+ ).  

Next, we investigate how well the ARX(a,b) model 
estimated in Equation (4) reproduces the input/output 
relationship of )(tey  and )(ty : 
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where )(tey  is considered to be an approximation of 
the system input estimated from Equation (3). Again, 
note that the iα  and jβ  coefficients are associated 
with )(tx  and obtained from Equation (4). Therefore, 
if the ARX model obtained from the reference signal 
block )(tx  were not a good representative of the newly 
obtained signal segment )(ty  and )(tey  pair, there 
would be a significant change in the probability 
distribution of the residual error, )(tyε . Particularly, 
the standard deviation of the residual error, )( yeσ , is 
expected to increase at most near the actual damage 
sources providing the localisation information of 
damage.  
 
 

4. Analysis Results 
 

For the localisation of nonlinear damage, three different 
damage scenarios are studied varying the damage 
locations. For each damage case, five sets of time 
histories are recorded. Table 2 summarises the damage 
cases studied in this example. 

Table 2: List of studied nonlinear damage scenarios 
Damage 
scenari

os 

Damage 
description Type of excitation 

Test 
# 

1 No damage Random, 3Volts 5 
2 Bumper at mass 1 Random, 3Volts 5 
3 Bumper at mass 5 Random, 3Volts 5 
4 Bumper at mass 7 Random, 3Volts 5 

 
First, the iα  and iβ  coefficients in Equation (4) 

are computed for an individual DOF using one of the 
five time series obtained under the undamaged state of 
the structure. Next, the residual error, )(tey , in 
Equation (5) is computed for all damage cases.  

Table 3 summarises the standard deviation of the 
residual errors, )( yeσ , for each DOF and all damage 
cases and Table 4 shows the mean )( yeσ  values for an 
individual damage case with respect to DOFs. If a 
bumper were introduced at mass 1, the largest increase 
in the residual standard deviation would be expected at 
the nearest measurement point, DOF 1. As shown in 
Table 3, no significant increase in )( yeσ was found for 
DOF 1 when the bumper was introduced at mass 1. 
Instead, the )( yeσ value in the next adjacent 
measurement point, DOF 2, was significantly increased 



from 0.1229 to 1.0005 on average (see Figure 3(a)). It 
is speculated that because DOF 1 is rigidly connected 
to the shaker by a rod, the response at this point is 
masked by the direct influence of the random input. 

When the bumper was placed at mass 5, the average 
)( yeσ  value in DOF 5 increased from 0.1352 to 

1.1670 marking the largest increase among all DOFs 
(see the fourth row of Table 4 and Figure 3(b)). A 
similar result is observed when the bumper is placed at 
mass 7 (Figure 3(c)). Here a simple chart of the 

)( yeσ values with respect to DOFs seems to reveal the 
approximate location of the nonlinear damage as shown 
in Table 4. However, in order to establish a rigorous 
threshold value, test data need to be acquired under 
different operational conditions, and the probability 
distribution of )( yεσ  first needs to be estimated. 
Because the data sets given to us are limited, the 
construction of the threshold value based on a rigorous 
statistical analysis is not achieved in this example. 

In reality, the influences of operational and 
environmental conditions to the residual error need to 
be addressed. For example, the amplification of the 
input force can also introduce amplitude-dependent 
nonlinearity resulting in the increase in )( yeσ . Table 5 
illustrates that the )( yeσ  values gradually increase in 
accordance with the level of input amplitude.  

The authors have been investigating a data 
normalisation procedure to differentiate the effects of 
these environmental and/or operation conditions to the 
residual errors from these of structural characteristics 
of our interest, damage (Sohn et al, 2001). The 
application of this data normalisation procedure to this 
example will be presented in near future. 

 
Table 3: Standard deviation of the residual errors 

)( yeσ  for various damage scenarios 
Data 
set # 

No 
damage 

Bumper 
at m1 

Bumper 
at m5 

Bumper 
at m7 

DOF 1 
1 0.0226† 0.1708 0.1229 0.1615 
2 0.1547 0.1533 0.1112 0.1580 
3 0.1136 0.1756 0.1112 0.1427 
4 0.1059 0.1841 0.1527 0.1613 
5 0.1153 0.1834 0.1317 0.1767 

Mean 0.1024 0.1735 0.1259 0.1600 
DOF 2 

1 0.0304† 0.9665 0.2196 0.2744 
2 0.1919 1.0063 0.2128 0.2600 
3 0.1069 1.0217 0.2128 0.2896 
4 0.1488 1.0145 0.2543 0.3407 
5 0.1366 0.9935 0.2190 0.3030 

Mean 0.1229 1.0005 0.2237 0.2935 
DOF 3 

1 0.0014† 0.4688 0.2323 0.2913 
2 0.1947 0.5474 0.2215 0.3288 
3 0.1300 0.5464 0.2215 0.2947 
4 0.1446 0.5254 0.2413 0.3334 
5 0.1590 0.5058 0.2326 0.3001 

Mean 0.1259 0.5188 0.2298 0.3097 
DOF 4 

1 0.0025† 0.2891 0.2893 0.3545 
2 0.1802 0.2957 0.2276 0.3672 
3 0.1309 0.2826 0.2276 0.3765 
4 0.1601 0.3341 0.2825 0.4063 
5 0.1476 0.2788 0.2847 0.3721 

Mean 0.1243 0.2961 0.2623 0.3753 
DOF 5 

1 0.0041† 0.3524 1.1248 0.3976 
2 0.2036 0.3703 1.1095 0.4185 
3 0.1321 0.3771 1.1095 0.3705 
4 0.1703 0.3870 1.3184 0.3971 
5 0.1659 0.5001 1.1730 0.4248 

Mean 0.1352 0.3974 1.1670 0.4017 
DOF 6 

1 0.0002† 0.2560 0.3600 0.6425 
2 0.1515 0.2135 0.3406 0.6342 
3 0.1061 0.2003 0.3406 0.6463 
4 0.1247 0.2480 0.3505 0.6472 
5 0.1233 0.3733 0.2913 0.6376 

Mean 0.1012 0.2582 0.3366 0.6416 
DOF 7 

1 0.0035† 0.2219 0.1941 0.6714 
2 0.1854 0.1877 0.1481 0.6870 
3 0.1241 0.2307 0.1481 0.6185 
4 0.1210 0.2742 0.1984 0.6705 
5 0.1633 0.2169 0.1440 0.6799 

Mean 0.1195 0.2263 0.1666 0.6655 
DOF 8 

1 0.0030† 0.1702 0.2111 0.1918 
2 0.1480 0.1572 0.1367 0.2151 
3 0.1140 0.1726 0.1367 0.2400 
4 0.1161 0.1961 0.1457 0.2455 
5 0.1296 0.1521 0.1522 0.2271 

Mean 0.1021 0.1696 0.1565 0.2239 
† The standard deviations for these data sets are significantly 
smaller than the others because they are used for both the 
estimation of the ARX model and prediction. 

 
 

5. Conclusion 
 

An attempt is made to locate the damage locations 
within a mechanical system solely based on the time 
series analysis of vibration test data. The standard 
deviation of the residual errors, derived from a 
combination of AR and ARX models, is used to locate 
damage. A noticeable increase in this residual standard 
deviation is observed near the actual damage regions. 
The presented approach is very attractive for the 
development of an automated continuous monitoring 
system because of its simplicity and no interaction with 
users. Furthermore, because damage diagnosis is 
conducted independently at an individual sensor level, 
time synchronisation among the multiple sensors is not 
necessary. However, it should be pointed out that the 
procedure developed has only been verified on a 
limited amount of data. Ideally, it would be necessary 
to examine many time records corresponding to a wide 
range of operational and environmental cases as well as 
different damage scenarios before one could state with 



confidence that the proposed method is robust enough 
to be used in practice. 
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Table 4: Mean standard deviation of the residual errors )( yeσ  for all DOFs and damage scenarios 

Bumper 
Location DOF 1 DOF 2 DOF 3 DOF 4 DOF 5 DOF 6 DOF 7 DOF 8 

No  0.1024 0.1229 0.1259 0.1243 0.1352 0.1012 0.1195 0.1021 
at m1 0.1735 1.0005 0.5188 0.2961 0.3974 0.2582 0.2263 0.1696 
at m5 0.1259 0.2237 0.2298 0.2623 1.1670 0.3366 0.1666 0.1565 
at m7 0.1600 0.2935 0.3097 0.3753 0.4017 0.6416 0.6655 0.2239 

 
Table 5: The variation of the residual errors )( yeσ  for various input levels (obtained from DOF 8) 

Input Excitation  Data 
set # 3 Volts 4 Volts 5 Volts 6 Volts 7 Volts 

1 0.0120 0.2528 0.3564 0.4645 0.6967 
2 0.1700 0.2070 0.4210 0.4299 0.7175 
3 0.1379 0.2256 0.2669 0.4515 0.7888 
4 0.1410 0.2295 0.2251 0.4256 0.7425 
5 0.1456 0.1919 0.3606 0.4645 0.8227 

Mean 0.1213 0.2214 0.3260 0.4472 0.7536 
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Figure 3: Comparison of the probability density functions for different damage cases 
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